площадь поверхности правильного тетраэдра равно 30 корень из 3 дм в квадрате. Найдите площадь поверхности конуса , вписанного в этоттетраэдр.
Сейчас я попробую, что-нибудь решить. Я же всё-таки не знаток, мне недавно 16 исполнилось. S1(Площадь правильного треугольника)=корень из 3 делим на 4 и умножаем на сторону в квадрате=SQRT3/4*a*a S2(площадь тетраэдра)=S1*4(так как в тетраэдре 4 равносторонних треугольника)=SQRT(3)*a*a=30*SQRT3 То есть a*a=30 а=SQRT(30) h(высота)=SQRT6/3*a=4,4721...=4,47 Теперь найду основание конуса. Радиус вписанной окружности равен. r=a*SQRT3/6=1,5811.....=1,58 S3(Вся площадь конуса)=ПЛощади окружности + площади боковой стороны=r*r*П=7,85374999 + П*r*SQRT(r*r+h*h) =7,85 +23,55 =31,4 дм в квадрате Я очень надеюсь, что правильно, заметь, конусы и тетраэдры я не проходил нигде, просто соображаю неплохо!! Скажи спасибо!