Боковые стороны прямоугольной трапеции относятся как 4:5, а одно из оснований на 9 см больше другого. Большая диагональ трапеции равна 20 см. Найдитесреднюю линию трапеции.
Меньшая боковая сторона перпендикулярна обоим основаниям и является высотой трапеции. Из второго конца меньшего основания проведём высоту, образуется прямоугольный треугольник, катет (высота трапеции) которого будет 4х, а гипотенуза - 5х, а другой катет будет составлять 9 см. Свяжем стороны этого треугольника с помощью теоремы Пифагора: 16х в квадрате + 81 = 25 х в квадрате, откуда 9х в квадрате = 9, х в квадрате = 9, х=3. Значит боковые стороны равны 12 см и 15 см. Теперь рассмотрим прямоугольный треугольник, гипотенузой которого является большая диагональ трапеции, равная 20 см, а катеты -12 и у+9. Применим теорему Пифагора к этому треугольнику. Получим (у+9)в квадрате + 144 = 400 у в квадрате +18у +81 +144=400 у в квадрате +18у - 175=0 у =-25 (не уд. условию задачи), у=7, а значит, меньшее основание равно 7см, а большее - 16см. Отсюда, зная, что средняя линия трапеции равна полусумме оснований, получаем (7+16):2=11,5 (см). Ответ: средняя линия данной трапеции равна 11,5 см.