Вставьте слова...

Тема в разделе "Геометрия", создана пользователем Funt, 16 фев 2010.

  1. Funt

    Funt New Member

    Вставьте слова в пропуски. 2. В параллелограмм вписана окружность. Найдите стороны параллелограмма, если его периметр равен 36 см. Решение. Пусть стороны параллелограмма равны а и b см. Тогда а+__=b+__ (теорема _____). Отсюда следует,что а__b, то есть параллелограмм является ________, поэтому сторона ромба равна 36__4=__см.
     
  2. asus

    asus New Member

    2. В параллелограмм вписана окружность.
    Найдите стороны параллелограмма, если его периметр равен 36 см.
      
    Решение. Пусть стороны параллелограмма равны а и b см. Тогда
    а+a=b+b (теорема В описанном четырёхугольнике суммы противоположных сторон равны). Отсюда следует,что а=b, то есть
    параллелограмм является ромбом, поэтому сторона ромба равна
    36/4=9см. 

    3. Найдите площадь четырехугольника АВСЕ, если его периметр равен 60 см, а радиус вписанной окружности равен 5 см.
      
    Решение. Соединим центр вписанной окружности с вершинами четырехугольника. Получим 4 треугольника. Проведем радиусы в точки
    касания Н,K,L и M. Отрезки ОН, OK, OL и OM будут перпендикулярны к сторонам АВ, ВС, CD и AD (радиус к
    касательной). Тогда площадь четырехугольника АВСЕ=площади треульника
    АВО+площади треугольника
    ВСО+CDO+DAO=1/2АВ*OH+1/2ВС*OK+1/2CD*OL+1/2AD*OM= 1/2*r*(АВ+ВС+CD+AD)=1/2r*периметр
    АВСЕ=1/2*5*60=150 см^2.
     
     

Поделиться этой страницей

Наша группа