В правильной четырехугольной пирамиде SABCD все ребра которой равны 1 , найти cos угла между прямой AB и плоскостьюSAD
Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), АО=ОС=OS=sqrt(2)/2. Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO. Из треугольника SOM получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3