В правильной n-угольной призме сторона основания равна а и высота равна h. Вычислите площадь боковой и полной поверхностей призмы, если: n = 6, а =23см, h = 5 дм
Площадь поверхности призмы равна сумме площадей боковой поверхности и двух ее онований. Площадь боковой поверхности - произведение периметра основания на высоту призмы: Sбок = nаh Обратим внимание, что длина стороны основания дана в сантиметрах, а высота - в дециметрах. а=23 см=2,3 дм Sбок=6*2,3*5 =69 дм² Так как в основании призмы - правильный шестиугольник, его площадь равна шестикратной площади правильного треугольника. Площадь правильного треугольника со стороной 2,3 дм S=а²√3):4 =2,3²√3):4 = (5,29√3):4 Площадь двух правильных шестиугольников (двух оснований призмы) 2*6*(5,29√3):4=3*(5,29√3)=15,87√3 дм² S полная=69+15,87√3 дм² ------------------------------------------ Примечание: Если длины сторон указаны в разных единицах ошибочно, ход решения останется тот же, только вычисления нужно будет сделать другие. Ответ, соответственно, тоже будет другим.