В трапеции длины...

Тема в разделе "Геометрия", создана пользователем Korjavin, 20 янв 2010.

  1. Korjavin

    Korjavin New Member

    В трапеции длины диагоналей равны 3 и 5, а длина отрезка, соединяющего середины оснований, равна 2. Найдите площадьтрапеции
     
  2. FRIDOM

    FRIDOM New Member

    Проводится прямая, параллельная диагонали длины 3 из вершины верхнего (малого) основания, куда приходит диагональ длины 5. Нижнее (большое) основание продолжается до пересечения с этой прямой. Получился треугольник, у которого боковые стороны 3 и 5.
    Площадь этого треугольника равна площади трапеции, поскольку у них общая высота и одинаковая средняя линяя.
    Легко показать простым вычислением положения концов, что медиана этого треугольника параллельна отрезку, соединяющему середины оснований, а поэтому она ему равна, то есть её длина 2.
    Теперь продолжим медиану на её собственную длину 2 за основание (НЕ ЗА ВЕРШИНУ:))) и соединим с вершинами основания ТРЕУГОЛЬНИКА. Получился параллелограмм (поскольку в нем диагонали делятся пополам, этого достаточно). Ясно что его стороны 3 и 5, а одна из диагоналей 4. Рассмотрим, так сказать, "другую половину" этого параллелограма.
    Легко видеть что это  - прямоугольный треугольник со сторонами 3,4,5.
    Его площадь 3*4/2 = 6 равна площади трапеции.  
    Все пояснения на рисунке
     

Поделиться этой страницей

Наша группа