В треугольнике АВС...

Тема в разделе "Геометрия", создана пользователем TanchikS, 7 янв 2010.

  1. TanchikS

    TanchikS New Member

    В треугольнике АВС равны углы А и С. На стороне АС взяты точки Д и Е такие, что АД=СЕ. Докажите, что треугольник ДВЕравнобедренный.
     
  2. P.I.T.

    P.I.T. New Member

    Т.к. углы A и С равны, то треугольник ABC равнобедренный. Проведем медиану BF к AC, которая в равнобедренном треугольнике является вершиной и высотой. Значит AF=FC. AF-DF=FC-FE, значит DF=FE. Значит DB соответсвенно равна BE и Dbe равнобедренный по двум сторонам.
     

Поделиться этой страницей

Наша группа