Дан квадрат ABCD, вершины A и D которого лежат на некоторой окружности, а две другие - на касательной к этой окружности. Через центр окружности проведенапрямая, параллельная AD. В каком отношении (считая от вершины A) эта прямая делит сторону AB. Ответ должен быть 3:5
Обозначим точку пересечения этой прямой и стороны квадрата АВ как Т АТ+ТВ = АВ ТВ = R ---радиус окружности выразим АТ через радиус... из равнобедренного треугольника АОD, где AD = AB = AT+R высота этого треугольника, проведенная к основанию, = АТ из получившегося прямоугольного треугольника по т.Пифагора (AD/2)^2 + AT^2 = R^2 AD^2 + 4AT^2 = 4R^2 (AT+R)^2 + 4AT^2 = 4R^2 AT^2 + 2AT*R + R^2 + 4AT^2 - 4R^2 = 0 5AT^2 + 2AT*R - 3R^2 = 0 D = (2R)^2 - 4*5*(-3R^2) = 4R^2 + 60R^2 = (8R)^2 AT = (-2R + 8R)/10 ---отрицательный корень не рассматриваем (не имеет смысла...) AT = 6R/10 = 3R/5 искомое отношение: AT/TB = (3R/5) / R = 3/5