Дан треугольник ABC....

Тема в разделе "Геометрия", создана пользователем Tuchik, 17 янв 2010.

  1. Tuchik

    Tuchik New Member

    Дан треугольник ABC. проведена средняядан треугольник ABC. проведена средняя линия MN. А и N, М и С соединены.и пересекаются в точке О. найтиотношение площади треугольника МОN к площади ABC
     
  2. Треугольник АВС, МН-средняя линия=1/2АС, ВТ-высота на АС, площадь АВС=1/2АС*ВТ, МН делит ВТ на две равные части ВК=КТ=1/2ВТ (точка К на МН)треугольник АОС подобен треугольнику МОН по двум равным углам (уголАОС=уголМОН как вертикальные, уголНАС=уголАНМ как внутренние разносторонние)в подобных треугольниках соответствующие отрезки пропорцианальны, ОК/ОТ=МН/ОТ, ОК/ОТ=1/2, 2ОК=ОТ, КТ=ОТ+ОК=2ОК+ОК=3ОК=1/2ВТ, ОК=1/6ВТ, площадь МОН=1/2*МН*ОК=1/2*1/2АС*1/6ВТ=1/24*АС*ВТ, площадьМОН/площадьАВС=1/24*АС*ВТ / 1/2*АС*ВТ=1/12  (ВТ не обязательно проходит через точку О, но высота трапецииАМНС все равно=1/2ВТ)
     

Поделиться этой страницей

Наша группа