Диагонали АС и...

Тема в разделе "Геометрия", создана пользователем NONKA, 8 фев 2010.

  1. NONKA

    NONKA New Member

    Диагонали АС и ВD четырёхугольника АВСD пересекаются в точке О, АО = 18 см, ОВ = 15 см, ОС = 12см, ОD = 10 см. Докажите, что АВСD –трапеция.
     
  2. Докажем, что АВСD - трапеция с основаниями
    Рассмотрим треугольники ВСО и АDO. Они подобны по второму признаку: угол ВОС=углу АОD (как вертикальные), АО/ОС=18/12=1,5 и ВО/OD=15/10=1,5.
    У подобных фигур соответствующие углы равны, т.е. угол СВО=углу ОDA и угол ВСО=углу ОАD. В то же время углы СВО и ОDA являются внутренними накрест лежащими при секущей ВD и прямых ВС и AD, следовательно, ВС || AD.
    Аналогично, углы ВСО и ОАD являются внутренними накрест лежащими при секущей АС и прямых ВС и AD, следовательно, ВС || AD.
    По определению трапеция - четырёхугольник, у которого две противоположные стороны параллельны, а две другие непараллельны. Так как ВС || AD, то АВСD - трапеция, что и требовалось доказать.
     

Поделиться этой страницей

Наша группа