Задача: Одна из диагоналей прямоугольной трапеции делит эту трапецию на два прямоугольных равнобедренных треугольника. Какова площадь этой трапеции, еслиее меньшая боковая сторона равна 4?
Боковая сторона (АВ)=4. Так как треугольник равнобедренный, то AD=4 тоже. По теореме Пифагора получаем, что ВD=корню из 32. Рассмотрим треугольник BDC. Он тоже равнобедренный, причем катеты равны корню из 32. Найдем гипотенузу, которая является большим основанием в трапеции. По теореме Пифагора она равна 8. Осталось только посчитать площадь. S=h*0,5*(a+b), где a, b - основания, h - высота в трапеции, равная меньшей боковой стороне (трапеция прямоугольная). S=0,5*4*(4+8)=24 Ответ: S=24