Найдите сумму пяти идущих подряд натуральных чисел, у которых сумма квадратов двух последних чисел равна сумме квадратов трёх первыхчисел. с РЕШЕНИЕМ , нужно.
Пусть n - первое число, сумма = n + (n+1) + (n+2) + (n+3) + (n+4) = 5n + 10 = 5(n+2) (n+3)^2 + (n+4)^2 = n^2 + (n+1)^2 + (n+2)^2 n^2 = (n+4)^2 - (n+2)^2 + (n+3)^2 - (n+1)^2 n^2 = (n+4-n-2)(n+4+n+2) + (n+3-n-1)(n+3+n+1) n^2 = 4(n+3) + 4(n+2) n^2 - 8n - 20 = 0 n1 = (8+12)/2 = 10 n2 = (8 - 12)/2 = -2 т.к. n - натурально то берем n1 и сумма равна 5(10 + 2) = 60