Пусть О- внутренняя точка квадрата ABCD. Пусть О- внутренняя точка квадрата ABCD со стороной АB=1, для которойвыполняется равенство AO^2+BO^2+CO^2+DO^2=2. Доказать что О-центр квадрата.
Т.к. ОМ перпендикулярна, то треугольники МОА, МОВ, МОС, МОD - прямоугольные. У них ОМ - общая сторона. Точка О делит диагонали квадрата пополам, значит АО=ОС=ОВ=ОD. Получается у треугольников равны две стороны и угол между ними - значит они равные - значит все соответствующие стороны равны. ччто и требовалось доказать. 2) найдем ОА: треугольник АВС - прямоугольный, ВС = корень ((АВ)^2+(AC)^2) = 4 корня из 2. АО = половина диагонали. = 2 корня из 2. по теореме Пифагора в треугольнике АМО: АМ = корень(8+1)=кореь (9) = 3