Условия: Найти градусную мерю меньшего угла прямоугольного треугольника, если радиус вписанного круга равен полуразности катетов. 2. В равносторонний треугольник ABC вписана окружность и проведен отрезок MN, который касается ее и параллелен стороне AB. Определите периметр трапеции AMNB, если длина стороны AB = 18. Заранее Спасибо.
1) Радиус вписанной в прямоугольный треугольник окружности находят по формуле r=(а+в-с):2, где а и в - катеты, с - гипотенуза треугольника. По условию задачи радиус вписанного круга равен (а-в):2. Вставим это значение радиуса в формулуа-в):2=(а+в-с):2 Домножим обе части уравнения на 2 а-в=а+в-с 2в=с в=с:2 Катет в вдвое меньше гипотенузы. Следовательно, он противолежит углу 30ᵒ -------------------------- 2) Радиус вписанной в равносторонний треугольник окружности равен одной трети высоты этого треугольника, а диаметр -двум третям. Высоту правильного треугольника находят по формуле h=(a√3):2, где а - сторона треугольника. h=(18√3):2 КН ( диаметр окружности) = две трети высоты ВН = 2(18√3):2):3=6√3 Окружность оказалось вписанной в трапецию AMNB, высота которой равна диаметру окружности, т.е. 6√3 Опустив из вершины угла М высоту МН1 к основанию АВ, получим прямоугольный треугольник АМН1 с противолежащим высоте углом А= 60ᵒ. АМ отсюда равна К1Н1:sin60ᵒ =12 см АН₁ =АК₁*sin30ᵒ=6 см СН₂=АН₁=6см Н₁Н₂=МN =6 см Р трапеции AMNB=12*2+18+6=48 см