при делении двузначного числа на сумму его цифр в частном получается 6, а в остатке 4. при делении этого же числа на произведение его цифр в частномполучается 2, а в остатке 16. найти это число
а - число десятков, b - число единиц. Двузначное число равно 10а+b, сумма его цифр a+b. (10a+b)/(a+b)=6 (ост.4) 10a+b=6(a+b)+4 10a+b=6a+6b+4 4a=5b+4 a=1,25b+1 Так как a и b - натуральные однозначные числа, то единственный возможный вариант, что b=4. а=1,25*4+1=6 Искомое число - 64. Ответ: 64.