у кого есть...

Тема в разделе "Геометрия", создана пользователем emovere, 3 фев 2010.

  1. emovere

    emovere New Member

    у кого есть решения этих задач,выложите пожалуйста или решите 1. Боковое ребро правильной треугольной пирамиды равна 6 см, и составляет сплоскостью основания угол 60°. Найдите объем пирамиды.

    2. В конус вписана пирамида. Основанием призмы служит прямоугольный треугольник, катет которого равен 2a, а прилежащий угол равен 30°. Боковая грань пирамиды, проходящая через данный катет, составляет с плоскостью основания угол в 45°. Найдите объем конуса
     
  2. Ma|(s

    Ma|(s New Member

    1) находим высоту пирамиды 6*sin60=6*sqrt(3)/2=3*sqrt(3)
    Находим площадь основания
    S=3R^2sqrt(3)/4
    R=6*cos60=3
    S=3*9sqrt(3)/4=27sqrt(3)/4
    V=1/3hS=27*sqrt(3)*3sqrt(3)/3*4=81/4=20,25

    2) Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.
     

Поделиться этой страницей

Наша группа