1)Дано:АВСВ-параллелограмм;угол AEC=132 градуса, .Найти:угла паралелограмма. 2)Дано:MBND-параллелограмм;угол ADM=углу CBN.Доказать : ABCD-параллелограм .
Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит плоскости. Поэтому: а) РЕ ⊂ пл. ADB; MK ⊂ пл. BCD, DB = ADB ∩ CBD, DB ∈ ADB, DB ∈ CBD; АВ = ABC ∩ DAB, AB ∈ ABC и AB ∈ DAB; EC ⊂ ABC, т.к. С ∈ АВС, и Е ∈ АВС. б) DK ⊄ ABC, С ∈ DK, C ∈ ABC, значит, DK ∩ ABC = C (см. рис. 5, б) на стр. 6 учебника); Е ∈ СЕ, Е ∈ ABD, CE ⊄ ABC, значит, СЕ ∩ ADB = E; СЕ ∩ ADB = E; в) A, D, B, P, M, E ∈ пл. ADB; D, B, C, M, K ∈ DBC. Точки, лежащие в ADB и DBC одновременно: D, B, M. г) АВС ∩ DCB = BC; ABD ∩ CDA = AD; PDC ∩ ABC – CE.