KO — перпендикуляр к плоскости, KM и KP — наклонные к плоскости альфа, OM и OP — проекции наклонных, причем сумма их длин равна 15 см. Найдитерасстояние от точки K до плоскости альфа, если KM=15 см и KP= 10√3 см.
(В решении будем использовать теорему Пифагора в прямоугольных треугольниках.) Решение: По условию дано, что ОМ + ОР = 15 см. Пусть ОМ = х , тогда ОР = 15 - х. Рассмотрим треугольники КОМ и КОР. Данные треугольники являются прямоугольными, так как КО - перпендикуляр к плоскости альфа. По теореме Пифагора выразим общий катет (KO) треугольников КОМ и КОР: 1. В треугольнике КОМ: КО^2 = 15^2 - OM^2 KO^2 = 225 - x^2 2. В треугольнике КОР: КО^2 = (10sqrt3)^2 - OP^2 KO^2 = 100 * 3 - (15 - x)^2 KO^2 = 300 - (15 - x)^2 Из двух полученных значений КО^2 следует, что: KO^2 = 225 - x^2 = 300 - (15 - x)^2 или 225 - x^2 = 300 - (15 - x)^2 Тогда x = 5 => OM = 5 (см) Из треугольника КОМ выразима КО по теореме Пифагора, т.е.: КО = sqrt (225 – 25) = sqrt 200 = sqrt (100 * 2) = 10 sqrt 2 Далее, если нужно, выражаем это значение более подробно. Для этого находим значение квадратного корня из двух и решаем: Sqrt 2 ~ 1, 414 ~ 1, 4 => KO ~ 10 * 1,4 => KO ~ 14 (см) Ответ: 10 sqrt 2 (или 14 см).